# Can we control antimicrobial resistance through effective education and better diagnosis?

ABNMS2022, November 17th

Yue Wu, Tom Snelling, Mark Tanaka

#### Antimicrobial resistance (AMR)



# The AMR problem



## The AMR problem



# The AMR problem

- Every year > 500,000 young children present to emergency departments (ED) in Australia. Of these, 100,000 presentations are due to suspected infection <sup>1</sup>
- Of febrile children presenting to ED, approximately 7% had evidence of significant bacterial infection (may benefit from abx), half of whom had a urinary tract infection <sup>2</sup>
- 1/4 febrile children received antibiotic prescription in ED<sup>4</sup>
- How about primary care?
- Adult and elderly population?
- Non-clinical antibiotic use?

<sup>1</sup> Australian Institute of Health and Welfare (AIHW) report. <sup>2</sup> Craig *et.al. BMJ*, 20, 340 (2010)



# Modelling the problem domain



### Modelling the problem domain





## Modelling the problem domain



# Example events and parameters of interest

| Microbial<br>evolution<br>Population<br>health<br>Infection<br>management | Prevalence of amoxicillin resistance in E.coli, WA in 2015                                                        | ~50%                     |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------|
|                                                                           | Annual increase of AMR prevalence in population                                                                   | <5%                      |
|                                                                           | Typical size of E.coli population                                                                                 | ~10^8                    |
|                                                                           | Rate of chromosomal mutation per bacterial generation<br>(not necessarily mean taking over by resistant bacteria) | ~10^-8                   |
|                                                                           | Rate of horizontal gene transfer between cells per bacterial generation                                           | ~10^-6                   |
|                                                                           | Size of Australian population under 10yo in 2021                                                                  | 3,153,780 (12% of total) |
|                                                                           | Young children present to ED each year in Australia                                                               | >500,000                 |
|                                                                           | Paediatric infection episodes present to ED                                                                       | 100,000 each year        |
|                                                                           | Relative attribution of bac vs non-bac causes                                                                     | 1:9                      |
| Clinical decision                                                         | Rate of antibiotic prescription in ED                                                                             | ?1/3                     |
| making                                                                    | Influence of education on decision making                                                                         | ???                      |

# Challenges so far

- Define variables (highly variable and interactive dynamics)
  - Translate molecular activities of bacteria into an evolutionary trend of AMR in host/human population
  - Switch concepts between individual vs population health
- Parameterisation
  - $\circ~$  require well-defined variables
  - relying on literature and domain expert knowledge, as data collection can be slow/difficult (but important to scope out how/what data can be collected)
  - extensive simulations may be needed to account for uncertainties

# A lot of interesting questions can be explored

- Can we slow down the AMR through effective education and better diagnosis?
- How effective/accurate the interventions need to be?
- Is the answer different for different infections? E.g., UTI vs respiratory tract infections
- What is role of human behaviour (concern) in this picture
- Introducing utilities?
- Trade-off between individual vs population, current vs future benefits/costs

#### Acknowledgement

Steven Mascaro, Jessica Ramsay, Ariel Mace



School of Biotechnology and Biomolecular Sciences (BABS). Evolution & Ecology Research Centre (E&ERC)



**ADAPTIVE HEALTH** 

INTELLIGENCE

**EVIDENCE IN ACTION** 

Sydney School of Public Health

 $A \rightarrow B \rightarrow N \rightarrow M \rightarrow S$ 

Australasian Bayesian Network Modelling Society

#### How should we define utility?

